
solution with a concentration c = 5"10 -3 kg/m 3 the average absolute value of the transverse 
pulsation is decreased by 1.7 times. 

NOTATION 

N, particle concentration; Wav, average velocity in transverse direction; t, time; s, 
distance between magnetic marking coils; vav, average velocity in longitudinal direction; M, 
magnetization per unit volume of liquid; I, intensity of ~ signal; Re, Reynolds number; k, 
• proportionality factors. 
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BOUNDARY LAYER ABOVE A SEMI-INFINITELY LARGE HOT PLATE IN 

A MEDI~I WITH PI~SE TRANSITION 

K. B. Pavlov and A. S. Romanov UDC 5 3 2 . 5 2 6 . 2  

A self-adjoint solution in the "boundary layer" approximation is constructed 
to the problem of streamlining of a hot plate by a medium in which a phase 
transformation occurs. A longitudinal pressure gradient exists within the re- 
gion of the liquid phase. 

Let a substance in the solid state with density Po and phase transition temperature Tf 
move in the direction of the x axis at a constant velocity Uo in the half-space y > 0. The 
temperature of the solid at y + ~ is given and assumed to be T~ < Tf. At y = 0 there is 
located a semi-infinitely large stationary flat plate (0 ~x < ~) whose temperature is every- 
where the same Tw > Tf. Above this plate, moreover, there forms a layer 0 < y < yf(x) (where 
yf(x) denotes the phase transition surface) within which the liquid phase of the given sub- 
stance flows (Fig. |). 

The processes of heat and mass transfer within the region of the liquid phase 0 < y < 
yf(x), x > 0 are described by the system of equations [I] 

8 ~  8 A ~  8 ~  OA~ 
= vAA~F, ( 1 ) 

ay  Ox ax ay 

O~__~___ a T  OR r a T  _ •  + V 4 [ O~ffy ~ q- 
Oy Ox Ox Oy c Oy z Ox 2 ' " 

H e r e  x ,  y a r e  r e s p e c t i v e l y  t h e  l o n g i t u d i n a l  and t h e  t r a n s v e r s e  c o o r d i h a t e s ,  ~ = ~ ( x ,  y )  i s  
t h e  f l o w  f u n c t i o n  (u  = 3 ~ / 3 y ,  v = - - 3 ~ / 3 x  a r e  r e s p e c t i v e l y  t h e  l o n g i t u d i n a l  and t h e  t r a n s v e r s e  
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Fig. 1. Flow pattern. 

velocities), and v,~, p, c are respectively the kinematic viscosity, thermal diffusivity, 
density, and specific heat of the substance in the liquid state. 

The equations of transfer simplify for the region outside the liquid phase, because 
here the velocity of the medium is known: (3~/~y = Uo and 3~/~x = 0) so that 

U OT = • , (2) 
Ox 

where ~o d e n o t e s  t he  t h e r m a l  d i f f u s i v i t y  o f  t h e  s u b s t a n c e  i n  t he  s o l i d  s t a t e .  

The s y s t e m  o f  Eqs.  ( 1 ) ,  (2) must be supp l emen ted  w i t h  c o n d i t i o n s  a t  the  i s o t h e r m a l  
p l a t e  y = 0, as y + ~, x > 0, and a t  t he  phase  t r a n s i t i o n  s u r f a c e  y = y f ( x ) ,  x > 0. 

Owing to  " a d h e s i o n "  o f  the  l i q u i d  to  the  s o l i d  s u r f a c e ,  the  components  o f  v e l o c i t y  i n  
the  d i r e c t i o n  o f  v e c t o r  z t a n g e n t  to  the  phase  t r a n s i t i o n  s u r f a c e  y = y f ( x )  shou ld  be equa l  
on b o t h  s i d e s  o f  t h a t  s u r f a c e  ( F i g .  1).  As a c o n s e q u e n c e ,  

olg (x, y ~ -  o) - bs o ~  (, ,  y ~ -  o) = yj Uo, b j =  ayj  (3) 
Og -~x dx ' 

where • d e n o t e s  t h a t  t he  c o r r e s p o n d i n g  l i m i t  has  b e e n  r e a c h e d .  

From the  c o n t i n u i t y  o f  the  s t r e a m  o f  s u b s t a n c e  t h r o u g h  the  phase  t r a n s i t i o n  s u r f a c e ,  
f u r t h e r m o r e ,  t h e r e  f o l l o w s  the  c o n d i t i o n  

0~  @ 0~  (x, YI--O)=~YfUo, ~ ~ Po (4) b~ 7y (*' y ' -  0) ~ p 

Taking into account relations (3) and (4), also considering that the plate can be per- 
meable, one can now write all the boundary conditions which the sought functions P(x, y) and 
T(x, y) must satisfy 

0XF (x, 0 ) = 0 ,  axF (x, 0 ) - -6 (x ) ,  T(x, 0 ) = T w .  
ay -~x 

a~_~_ (x, Yi - -  O) = Uo 1 + [Sb~ o~g (x, y j - -  O) = Uo ([~ - -  1) ~/s 
Oy 1-kb~ ' Ox l + b ~  ' 

OT OT [~k 
T (x, 9I) = Ty, yj ~ (x, gl - -  O) - -  ~ (x, Yl - -  O) = .  c• 91U~ + 

+ c~176215176 [ OT (x' Y' -k o) i l f - -  OT (x' Ys + O) ] ~ ~y T (x, oo) = T| 

(5) 

Here % is the latent heat of fusion. We note that the condition before the last one of con- 
ditions (5) follows from the expression for the thermal flux to surface y = yf(x) written in 
a form which takes into account the phase transition occurring at that surface. 

The system of Eqs. (I), (2) with conditions (5) completely define the boundary-value 
problem, which we will solve using the approach proposed by N. E. Kochin for solving the 
Blasius problem [2]. 

An examination of the boundary-value problem (I), (2), (5) indicates that its solution 
can be sought in the form of a power series with respect to the independent variable x 

~ (x, y) = v V,  f~ (~) (Uoxl~)O-h>/2 /~, 
k = O  

T (x, y) = T~ - -  (T~ - -  Ts) ~ Oh (~j (Uox/~) -k/~ , 
k = O  
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vr (x) = ~ ~ w (Uox/,~) (~-~)n, n = v/vr (x), 
0 h : 0  

where ~ is an unknown constant most expediently assumed equal to yo. With these expressions 
inserted into the system of Eqs. (I), (2) and conditions (5), the problem reduces to boundary- 
value problems in successive approximations involving ordinary differential equations. We 
will consider only the zeroth approximation, which corresponds to the conventional approxima- 
tion of a boundary layer. Within the region of the liquid phase, then, the original problem 
reduces to 

2f'" + f f ' =  2v, (6) 
20"+ ~ f 0 ' =  2mr "2, (7) 

. f ' (O)  = O, f (O)  = O, pf '  (1) -- /(1) = o, / ( 1 )  --o~213, ( 8 )  

0(0) = 0 ,  O(1)=  1, O ' ( 1 - - 0 ) = ~ Z d + ~ 0 ' ( 1  + 0 ) .  (9) 
2 Here e = v / x ;  m = Uo/ea  (Tw--  To) ;  d = B;ka/2c(Tw--  T f ) ;  ~ = co•215 m, i n j e c t i o n  param- 

e t e r ;  y, dimensionless constant which determines the pressure gradient 3p/Ox = ypUo/~2 4x,. the 
prime sign denotes differentiation with respect to the self-adjoint variable ~. The form of 
function ~ = ~(x), which determines the pattern of injection through the porous surface y = 
0, is stipulated by the condition of self-adjointness as ~(x) =--~/~o/2~fxx (~ > 0 corre- 
sponds to suction, m < 0 corresponds to injection). 

Within the region of the solid phase, on the other hand, the problem reduces to 

20",4- o~2q0' = 0; ( I O) 

0(t)  = 1; 0 ( ~ )  = (Tw--T~)/(T~o--Tj). (1 l) 

Assuming t h a t  T f -  T~ (~ T w - - T f ,  we can l e t  0(~) = 1 i n  the  l a s t  o f  c o n d i t i o n s  ( 1 I ) .  
Then the  s o l u t i o n  to  p r o b l e m ( 1 0 ) ,  (11) i s  0(~) =- 1. For  t h i s  r e a s o n ,  i t  i s  n e c e s s a r y  to  l e t  
0 '  (1 + 0) = 0 i n  t he  l a s t  o f  c o n d i t i o n s  ( 9 ) .  

With the  a id  o f  f u n c t i o n  f = f ( ~ )  found by s o l v i n g  the  p rob lem ( 6 ) - ( 9 )  one can now de -  
t e r m i n e  

v = g~SoX f/s,  u ~ O~lOv = uof'l~, v ----,- O~lOx = g-+-O-o (f'n - f)12~ ~/x. 

With c o n s t a n t  y assumed to  be known, the  h y d r o d y n a m i c  p rob l em ( 6 ) ,  (8) becomes i n d e p e n -  
den t  of the thermal problem. Moreover, the last of conditions (8) can be used for deter- 
mining the quantity a = /f(1)/B. It is expedient to seek f = f(~) in the form of a power 

series with respect to the self-adjoint variable f = ~ahN k Eq. (6) then yielding for a k the 
h--3 

recurrence relation a3 = (Y --a2~)/6 and a k ~ ~=0 = -- ajak-~-j (k -- j -- l)(k -- j -- 2)/2k(k -- I). 
f=0 

(k- 2) (k > 3). The remaining unknowns C~o, c~i, a2 must be found from the first three of 

boundary conditions (8): ~Zo = ~, tit = 0, ~ (Bk- l)cz k = 0. (The last of these equations 
k=0 

must be solved for a2, which can be done, e.g., by the method of successive approximations. 
o As the zeroth approximation can serve el2 = (w -- y/3)/(2B -- I -- m/3)). 

After f = f(q) has been determined, problem (7), (9) must be solved for 0 = 8(~) and 
conditions (9) also yield the quantity d 

where 

0 = S e-P[ c~2d § .l mf"2eVd~l] d~, 
0 1 

1 "q 1 

d = { 1 - -  Se-r[ j'mf"2erd~lld~l}la~j'e-Pd~l, 
0 1 0 

F =  ~--- ~ fdn. 
2 

1 

It is evident that in the general case both heat and mass transfer within the given 
boundary layer depend on five parameters: o, m, d, m, B. Numerical calculations according 
to the relations derived here are sufficiently elementary for programming on a computer. We 
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Fig. 2. Basic flow characteristics 

O 

Fig. 3. Relations between flow param- 
eters and physical characteristics of 
the problem. 

will, therefore, consider only the simplest case m = ~ = 0 and B = I. The relations f(n)/~, 
f,(~)/~2, and f~ = 2(f'n -- f)/~ have been plotted in Fig. 2 for o = 5 and d = 1.98, which 
roughly corresponds to a water--ice system for T w = 373~ There a 0 = e(n) dependence is 
formed for the cases o = 5 and d = 1.98 (curve i) or 0.06 (curve 2). The dashed line corres- 
ponds to small values o <<i, at which function 0 is linear (0~). 

The graph in Fig. 3 depicts the dependence of parameter ~, determining the size of the 
molten zone on the parameters --y/3a 4 and r = f"(0)/~ 3, respectively, determining the pressure 
gradient and the viscous stress at the plate, both single-valued functions of parameter ~. 
On the same diagram is also shown the dependence of ~ on the physical parameters of the 
problem. Curves 1 and 2 correspond to ~ = 0.5 and 5.0, respectively. 

In conclusion, we note that a boundary layer localized in space also forms in the case 
of a semi-infinitely largeplate streamlined by a nonlinearly viscous dilatant non-Newtonian 
fluid [3]. It must be emphasized, however, that the principal feature of a boundary loca- 
lized in space as in this particular case is existence in it of a nonzero pressure gradient. 
Exactly this pressure gradient makes it possible to satisfy the condition of a zero trans- 
verse velocity component at the phase transition surface. 
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